skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Imai, Hiroshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background Shift workers are at high risk of developing sleep disorders such as shift worker sleep disorder or chronic insomnia. Cognitive behavioral therapy (CBT) is the first-line treatment for insomnia, and emerging evidence shows that internet-based CBT is highly effective with additional features such as continuous tracking and personalization. However, there are limited studies on internet-based CBT for shift workers with sleep disorders. Objective This study aimed to evaluate the impact of a 4-week, physician-assisted, internet-delivered CBT program incorporating machine learning–based well-being prediction on the sleep duration of shift workers at high risk of sleep disorders. We evaluated these outcomes using an internet-delivered CBT app and fitness trackers in the intensive care unit. Methods A convenience sample of 61 shift workers (mean age 32.9, SD 8.3 years) from the intensive care unit or emergency department participated in the study. Eligible participants were on a 3-shift schedule and had a Pittsburgh Sleep Quality Index score ≥5. The study comprised a 1-week baseline period, followed by a 4-week intervention period. Before the study, the participants completed questionnaires regarding the subjective evaluation of sleep, burnout syndrome, and mental health. Participants were asked to wear a commercial fitness tracker to track their daily activities, heart rate, and sleep for 5 weeks. The internet-delivered CBT program included well-being prediction, activity and sleep chart, and sleep advice. A job-based multitask and multilabel convolutional neural network–based model was used for well-being prediction. Participant-specific sleep advice was provided by sleep physicians based on daily surveys and fitness tracker data. The primary end point of this study was sleep duration. For continuous measurements (sleep duration, steps, etc), the mean baseline and week-4 intervention data were compared. The 2-tailed paired t test or Wilcoxon signed rank test was performed depending on the distribution of the data. Results In the fourth week of intervention, the mean daily sleep duration for 7 days (6.06, SD 1.30 hours) showed a statistically significant increase compared with the baseline (5.54, SD 1.36 hours; P=.02). Subjective sleep quality, as measured by the Pittsburgh Sleep Quality Index, also showed statistically significant improvement from baseline (9.10) to after the intervention (7.84; P=.001). However, no significant improvement was found in the subjective well-being scores (all P>.05). Feature importance analysis for all 45 variables in the prediction model showed that sleep duration had the highest importance. Conclusions The physician-assisted internet-delivered CBT program targeting shift workers with a high risk of sleep disorders showed a statistically significant increase in sleep duration as measured by wearable sensors along with subjective sleep quality. This study shows that sleep improvement programs using an app and wearable sensors are feasible and may play an important role in preventing shift work–related sleep disorders. International Registered Report Identifier (IRRID) RR2-10.2196/24799. 
    more » « less
  2. null (Ed.)
    Background Shift work sleep disorders (SWSDs) are associated with the high turnover rates of nurses, and are considered a major medical safety issue. However, initial management can be hampered by insufficient awareness. In recent years, it has become possible to visualize, collect, and analyze the work-life balance of health care workers with irregular sleeping and working habits using wearable sensors that can continuously monitor biometric data under real-life settings. In addition, internet-based cognitive behavioral therapy for psychiatric disorders has been shown to be effective. Application of wearable sensors and machine learning may potentially enhance the beneficial effects of internet-based cognitive behavioral therapy. Objective In this study, we aim to develop and evaluate the effect of a new internet-based cognitive behavioral therapy for SWSD (iCBTS). This system includes current methods such as medical sleep advice, as well as machine learning well-being prediction to improve the sleep durations of shift workers and prevent declines in their well-being. Methods This study consists of two phases: (1) preliminary data collection and machine learning for well-being prediction; (2) intervention and evaluation of iCBTS for SWSD. Shift workers in the intensive care unit at Mie University Hospital will wear a wearable sensor that collects biometric data and answer daily questionnaires regarding their well-being. They will subsequently be provided with an iCBTS app for 4 weeks. Sleep and well-being measurements between baseline and the intervention period will be compared. Results Recruitment for phase 1 ended in October 2019. Recruitment for phase 2 has started in October 2020. Preliminary results are expected to be available by summer 2021. Conclusions iCBTS empowered with well-being prediction is expected to improve the sleep durations of shift workers, thereby enhancing their overall well-being. Findings of this study will reveal the potential of this system for improving sleep disorders among shift workers. Trial Registration UMIN Clinical Trials Registry UMIN000036122 (phase 1), UMIN000040547 (phase 2); https://tinyurl.com/dkfmmmje, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046284 International Registered Report Identifier (IRRID) DERR1-10.2196/24799 
    more » « less
  3. Abstract We present the first unbiased survey of neutral hydrogen absorption in the Small Magellanic Cloud. The survey utilises pilot neutral hydrogen observations with the Australian Square Kilometre Array Pathfinder telescope as part of the Galactic Australian Square Kilometre Array Pathfinder neutral hydrogen project whose dataset has been processed with the Galactic Australian Square Kilometre Array Pathfinder-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the Small Magellanic Cloud region, as well as an improvement in the quality of absorption spectra over previous surveys of the Small Magellanic Cloud. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the Small Magellanic Cloud and is more representative of the Small Magellanic Cloud as a whole. We also find that the optical depth varies greatly between the Small Magellanic Cloud’s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of $$\mathcal{R}_{\mathrm{HI}} \sim 1.04$$ ) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities. 
    more » « less
  4. The East Asian VLBI Network (EAVN) is an international VLBI facility in East Asia and is operated under mutual collaboration between East Asian countries, as well as part of Southeast Asian and European countries. EAVN currently consists of 16 radio telescopes and three correlators located in China, Japan, and Korea, and is operated mainly at three frequency bands, 6.7, 22, and 43 GHz with the longest baseline length of 5078 km, resulting in the highest angular resolution of 0.28 milliarcseconds at 43 GHz. One of distinct capabilities of EAVN is multi-frequency simultaneous data reception at nine telescopes, which enable us to employ the frequency phase transfer technique to obtain better sensitivity at higher observing frequencies. EAVN started its open-use program in the second half of 2018, providing a total observing time of more than 1100 h in a year. EAVN fills geographical gap in global VLBI array, resulting in enabling us to conduct contiguous high-resolution VLBI observations. EAVN has produced various scientific accomplishments especially in observations toward active galactic nuclei, evolved stars, and star-forming regions. These activities motivate us to initiate launch of the ’Global VLBI Alliance’ to provide an opportunity of VLBI observation with the longest baselines on the earth. 
    more » « less